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Abstract: To detect inconsistencies in any type of data first it is necessary to define what is considered to be anomalous. Usually, 
elements with characteristics opposed to those reputed as normal of local and/or global neighbourhood elements in the dataset 
are deemed anomalies. Some spots in grapevines leaves can signal the existence of biotic or abiotic problems, which may 
negatively influence both yield and quality. Indeed, crop diseases are responsible for major economic losses in the agriculture 
worldwide. As such, their early detection and mitigation is key to make agricultural production more efficient and sustainable. 
Traditional techniques for diseases detection in viticulture are conducted by in-field visual inspection or through laboratory 
analysis. Even though these techniques can have good results, they are a very time-consuming and demanding process when 
considering agricultural fields with considerable dimension. A more efficient, cheap and quick alternative is by means of automatic 
processing. In this study, computer vision techniques using images from the visible portion of the electromagnetic spectrum, also 
designated RGB, were explored for this purpose. Even though information provided by RGB images is limited for specific 
applications, recent studies have shown that when the proper processing is used, they can be used to detect grapevines 
biophysical parameters spatial variability. A comparison between three automatic techniques - unsupervised K-means clustering, 
supervised artificial neural network detection and vegetation indices – is also presented. Results show that anomalies that can 
be detected in visible part of electromagnetic spectrum are well identifiable by using vegetation indices, however, when neural 
network is well trained it seem to have a great potential for addressing anomalies in grapevines leaves as well. 
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1. Introduction 

The issue of anomaly detection in any kind of data can be defined as finding anomalous pattern characteristics as opposed to 
normal behavior of local or global neighborhood samples in a given dataset. Detection of those patterns can provide useful 
information because anomalies usually point out a specific condition. A survey about anomaly detection where anomalies were 
defined with associated challenges was carried out by Chandola et. al (2009). In agriculture, there are many attributes that 
influence crops’ development and potential yield. Some, such as the weather, soil or topography are hard to control, but others, 
like diseases, which are responsible for major economic losses in the agriculture industry worldwide (Martinelli et al., 2015) can 
be managed. A disease or plant stress can be represented by anomalous spots on the plant. Several techniques are used for 
detecting those spots. Traditional techniques consist in in-field visual observation by an agronomist and laboratory tests (Riley, 
Williamson, & Maloy, 2002). Even though this technique can provide good results, it is suitable for small areas because it is very 
time consuming and demanding. For bigger areas, remote sensing (RS) platforms are widely used. Indeed, RS is nondestructive 
and can cover large areas in short time with an adequate precision. Factors that mostly determine the quality of RS outputs are 
the platform and coupled sensor. There are three main platforms: satellites, manned aircrafts and unmanned aerial vehicles 
(UAVs). Each one has its limitations and advantages, but their suitability depends on the application and on the sensor that is 
used (Pádua et al., 2017). Sensors using bands from the visible part of the electromagnetic spectrum, also designated RGB, are 
the most common sensors currently available. The sensors capture the visible part of the electromagnetic spectrum and thus only 
visible anomalies can be detected. When regarding diseases, if the anomaly is visible it usually means that the disease is in its 
middle or late stage of development (Lowe et al, 2017). However, treatments are the most effective on early detections (Savary, 
Ficke, Aubertot, & Hollier, 2012) because future spreading can be stopped and appropriate treatment can be applied. Therefore, 
having a crop consistently monitored can be very important to detect the first signs of a disease. Due to their flexibility, adjustable 
granularity and low operational costs, UAVs are the most suitable RS platform to accomplish the task.  

Recent studies (Kalisperakis et al, 2015; Mathews & Jensen, 2013) have demonstrated that RGB images can be used for 
monitoring spatial variability of grapevine biophysical parameters. Nevertheless, for estimating those parameters, accurate and 
automated segmentation methods are required to extract relevant information (Poblete-Echeverría et al , 2017). In that study, a 
machine learning (ML) approach is used for addressing anomalies in grapevines leaves and is then compared to common k-
means clustering and vegetation indices (VIs) using RGB bands. ML is lately widely applied to classification, predicting future 
values, discovering structures and anomaly detection in many applications. This trend is mainly caused by the availability of data 
and high computational power that exist. Both factors are mandatory for a successful implementation of this approach and when 
they are met, ML has proven its efficiency and great potential (Chlingaryan et al, 2018). 

ML approach using RGB images in agriculture was used in Lameski et. al (2017) for weed detection, while in (Lottes et al, 2017) 
it allow to detect crops and classify weeds. (Debats et al, 2015) used a generalized computer vision approach using ML to map 
crop fields in agricultural landscapes and (Poblete-Echeverría et al., 2017) used ML, VIs and k-means clustering for segmentation 
of grapevines canopy. (Xue & Su, 2017) made a review of developments and applications of VIs, as they were used in many 
studies. K-means clustering is an unsupervised statistical classification method, popular for its relatively easy implementation. 
Related studies using K-means clustering are (Nair et al, 2016; Poblete-Echeverría et al, 2017; Tete & Kamlu, 2017). 

2. Material and Methods 

This section describes the used dataset and the methods used for anomalies detection. 

2.1 Used imagery data 

Five RGB images of grapevines leaves were used in this study, see Erro! A origem da referência não foi encontrada.. In the 
leaves are visible different levels of anomaly – inconsistent RGB values, presented by light green and brown color, which were 
used for creation of anomaly mask, see Figure 2. Different colors may represent different development stage of the anomaly, but 
this fact was not considered in this work. Leaves A., B and C, have almost no visible anomalies, while leaves D and E are the 
most affected. The RGB images were created by exporting adequate bands from hyperspectral data; 670,11 nm for red band, 
540,57 nm for green band and 480,65 nm for blue band. The hyperspectral data were acquired by Nano-Hyperspec (uVS-320) 
sensor with 15 ms frame period, 15 ms exposure, spectral range from 400 to 1000 nm (VNIR) and 270 bands.  
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Figure 1 – Five RGB grapevines leaves images with different levels of visible anomalies 

Reference masks were manually created to define the visible anomalous areas in each leaf, as presented in Figure 2. These 
masks were then used in the assessment of the performance of the methods evaluated in this study. While leaf A has 0.54% 
anomalies, leaf B has 0.88% and leaf C 0.58%. Leaves D and E are the most affected with 11.33% and 33.52%, respectively. 

 

Figure 2 – Reference anomaly masks where green represents healthy portions and the color red visible anomalies of the grapevines leaves 

2.2 Neural network classification 

Neural network (NN) processing is inspired by the human brain functionality and uses generalization to learn regularities from 
training samples that transfer to new samples (Weigend et al , 1993). The network structure makes it possible to analyze complex 
dependencies among the dataset and thus solve problems that common statistical methods struggle with (Shafri, 2016). The 
network does not need to be explicitly programmed: parts of the NN structure are used like “black boxes” (Mitchell, 1997), which 
hides the complexity. Many parameters and the network structure are empirically modified. 

NN structure used in this study is depicted in Figure 3, where three inputs can be seen in the respective layer as a value of RGB 
bands in the leaves’ images. One hidden layer with 10 neurons, followed by output layer with two outputs representing healthy 
portion “H” or the anomaly “A”. 

 

Figure 3 – Neural network structure used in this study to classify healthy and unhealthy portions of grapevines leaves RGB images 
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When using NN, several steps need to be ensured: The general workflow contains data acquisition, pre-processing - where data 
is cleaned and normalized -, followed by the building of the network structure and tuning the parameters. After the network 
structure is built, the training process can be conducted. The NN will learn inputs consistencies. In this study, a total of 1357 
samples for training, randomly selected within the leaves, were used; 684 samples of grapevine leaves with healthy portions and 
664 samples of anomalies. Exact numbers of the inputs can be seen in Table 1. Therefore, the trained NN was used for 
predictions. Acquired results should help in correcting the parameters configuration because of the gained insights about the 
dataset. The predictions for each pixel in the leaf with higher than 90 % certainty were binarized and compared against the 
reference anomaly masks (Figure 2). The binarization created black and white image with white color representing the predictions 
for anomalous parts. Last step was to appropriately visualize both data and results. 

Table 1 – Number of healthy and anomalous training samples taken from the five grapevines leaves used in this study. 

Leaf A  B  C D E 

Healthy 195 158 104 112 115 

Anomaly 141 140 121 134 128 

2.3 K-means clustering 

Clustering is a method that groups similar unlabeled patterns into a number of clusters (Gordon et al., 1999). K-means clustering 
is a common unsupervised partitioning method used in image processing that produces a clustering for specified number of 
classes. First step in the calculation is initialization of K clusters with K centroids (one for each cluster). The clusters with the 
centroids are then recalculated until all the data in each cluster are at minimum distance from their centroids (Macqueen, 1967). 
The algorithm is widely used due to its simple implementation and generally fast outputs. The data were grouped into two clusters: 
healthy and anomalous portions and then outputs representing anomalies were selected and binarized and finally compared with 
reference anomaly masks (Figure 2). 

2.4 Vegetation indices  

VIs are used for quantitative and qualitative evaluation of vegetation cover, vigor and other applications (Xue & Su, 2017). For 
their calculation simple mathematical operations or the transformation of spectral bands are used. They can be divided into two 
groups according to the width of the bands they use: broadband or narrow band VIs (Agapiou et al , 2012). Another division can 
be based on the part of the electromagnetic spectrum from which the used bands are. In this study images from the visible part 
of the electromagnetic spectrum are used and thus only indices calculated with those bands were selected. The list of indices 
used, and the corresponding equations is presented in Table 2. Outputs of VIs were segmented by Otsu’s thresholding method 
(Otsu, 1979). All binary results from each method were evaluated against the reference masks (Figure 2). 

Table 2 – Used RGB vegetation indices, respective equations and references 

Vegetation index Equation Reference 

Green-Red Vegetation Index GRVI = (Rgreen - Rred)/ (Rgreen+Rred) (Tucker, 1979) 

Modified Green-Red Vegetation 

Index 
MGRVI = (Rgreen - Rred)2/ (Rgreen+Rred)2 (Bendig, 2015) 

Blue/Green Pigment Index BGVI = (Rblue - Rgreen) (Zarco-Tejada et al., 2005) 

Blue/Red Pigment Index BRVI = (Rblue – Rred) (Zarco-Tejada et al., 2005) 

Excess Green ExG = (2*gn – rn - bn) (Woebbecke et al., 1995) 

Vegetativen VEG = (gn)/(rn^(a)* bn^(1-a)); where a = 0.667 (Hague et al., 2006) 
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Vegetation Index Green Varig = (Rgreen – Rred)/(Rgreen – Rred -Rblue) (Gitelson, et al., 2002) 

Red-green-blue vegetation index 
RGBVI = ((Rgreen)2- (Rblue*Rred))/((Rgreen)2 + 

(Rblue*Rred)) 
(Bendig, 2015) 

Triangular Greenness Index TGI = Rgreen - 0.39*Rred-0.61*Rblue (Hunt et al., 2013) 

2G_RGI 2G_RGI = 2*Rgreen – (Rred-Rblue) (Richardson et al., 2007) 

Green Percentage Index G% = (Rgreen) / (Rred +Rgreen +Rbue) (Richardson et al., 2007) 

where: rn = (Red)/(Rred+Rgreen+Rblue); gn = (Rgreen)/(Rred+Rgreen+Rblue); bn = (Rblue)/(Rred+Rgreen+Rblue) 

3. Results 

To make the results more relevant for cases such as leaves A, B and C – where the visible anomalies are a small portion when 
compared with the healthy part - the binary images complement was used. Plus, the VIs are mostly designed for detection of 
healthy parts in vegetation. Complement images were created also from the anomaly reference masks. Results are presented in 
Tables 3, 4 and 5 with: percentage of correctly detected pixels (true positives – TP); pixels that were detected but should not have 
been, considered as over detection (false positives - FP); and pixels that were not detected, considered as under detection (false 
negatives - FN). Precision, sensitivity and false negative rate (FNR) were obtained from the following equations (Olson & Delen, 
2008): 

 Precision = TP/(TP+FP) (1) 

 Sensitivity = TP/(TP+FN) (2) 

 FNR = 1-TP/(TP+FN)) (3) 

Precision is an expression of the statistical standard deviation, where it addresses how close are the estimates from different 
samples to each other. Sensitivity displays the ability of the technique to correctly detect pixels of interest and false negative rate 
is an indicator of how many pixels is predicted as not anomalous while they actually anomalous are. NN network results are 
presented in Table 3. The lowest proportion of correctly detected pixels is not below 90%. Leaf E – the most visibly affected by 
anomalies – had both the biggest over detection rate (2.65%) and under detection rate (8.83%), along with the lowest precision 
(97.17%) sensitivity (91.15%) and false negative rate (8.85%). The best precision was achieved with leaves A and B both with 
99.96%. 

Table 3 – Results obtained, per leaf, from NN method, for true positive classifications (TP), false positives (FP), false 
negatives (FN) and for precision, sensitivity and false negative rate (FNR), as well, the mean percentage value of all 

parameters 

Leaves 
TP 
(%) 

FP 
(%) 

FN 
(%) 

Precision 
(%) 

Sensitivity 
(%) 

FNR 
(%) 

A 95.76  0.04 4.20 99.96 95.80 4.20 

B 95.18 0.04 4.78 99.96 95.22 4.78 

C 96.76 0.05 3.19 99.95 96.81 3.19 

D 92.94 0.80 6.26 99.15 93.69 6.31 

E 90.93 2.65 8.83 97.17 91.15 8.85 

Mean 94.31 0.72 5.45 99.24 94.53 5.47 

 

Results of k-means clustering method are presented in Table 4. Most correctly detected pixels were achieved in leaf B with 
74.01%, followed by leaf A, with 73.90%. Both of those leaves have in common a small proportion of visible anomalies. However, 
leaf C, with a similar proportion of anomalies, was achieved 50.94%, which is the lowest value. 
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Table 4 – Results obtained, per leaf, from K-means clustering method, for true positive classifications (TP), false positives 
(FP), false negatives (FN) and for precision, sensitivity and false negative rate (FNR), as well, the mean percentage value of 

all parameters 

Leaves TP (%) FP (%) FN (%) 
Precision 

(%) 
Sensitivity 

(%) 
FNR 
(%) 

A 73.90 0.24 25.86 99.68 74.08 25.92 

B 74.01 0.82 25.17 98.90 74.62 25.38 

C 50.94 0.28 48.78 99.45 51.08 48.92 

D 64.46 9.31 26.23 87.38 71.08 28.92 

E 54.53 21.01 24.46 72.19 69.03 30.97 

Mean 63.57 6.33 30.10 91.52 67.98 32.02 

In Table 5 the results of VIs are presented. The overall best result was achieved by the Varig vegetation index with 97.04%, 
followed closely by GRVI with 96.97% and MGRVI with 96.83%. Nevertheless, GRVI achieved slightly lower over detection with 
1,23% than the aforementioned VI. Lowest values were presented by TGI with 87.17% and 2G_RGI with 87.39%.  

Table 5 – Mean values of the results obtained from vegetation indices computation, for true positive classifications (TP), 
false positives (FP), false negatives (FN), as well, the mean percentage value of the parameters 

Vegetation 
index 

TP (%) FP (%) FN (%) 
Precision 

(%) 
Sensitivity 

(%) 
FNR 
(%) 

GRVI 96.97 1.23 1.81 98.75 98.17 1.83 

MGRVI 96.83 2.09 1.08 97.89 98.90 1.10 

BGVI 89.45 9.30 1.26 90.58 98.61 1.39 

BRVI 94.59 4.64 0.77 95.32 99.19 0.81 

ExG 96.27 2.74 1.00 97.23 98.97 1.03 

VEG 90.70 9.30 0.00 90.70 100 0 

Varig 97.04 1.54 1.42 98.44 98.56 1.44 

RGBVI 94.63 4.96 0.40 95.02 99.58 0.42 

TGI 87.17 5.21 7.63 94.36 91.95 8.05 

2G_RGI 87.39 4.48 8.13 95.12 91.49 8.51 

G% 91.24 8.73 0.03 91.27 99.97 0.03 

 

4. Conclusion 

All tested techniques have been proven useful in addressing grapevines leaves anomalies detection, however with different 
performances. The best overall results were achieved by using VIs. Moreover, less effort is needed to determine them. NN had 
good results also, but with significantly more effort. K-means clustering using two clusters achieved the lowest performance.  

It is important to be aware that only clearly visible symptoms were detected in this study and that in the field there are a lot of 
factors (e.g. pesticides, dust, weather conditions and others) that can influence the appearance of leaves. Those factors may 
make some spots look like anomalies, but with no significant importance to the plants’ development, as opposed to diseases. 
Detection of anomalies that are more relevant for crops growth can be achieved by using sensors that capture a wider range of 
the electromagnetic spectrum, besides the visible part, namely hyperspectral sensors, but this study was focused on evaluation 
of image processing methods using the most accessible data to wide spectrum of user with the aim to find out their performances 
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for the task of automatic visible anomaly detection in grapevine leaves. The use of hyperspectral data for the same task will be 
conducted in future studies. Results of k-means clustering could be improved by using bigger number of “k” and each output 
compared with the reference mask and select the best cluster. VIs using narrower bands might reach even higher accuracies.  

Acknowledgments 

This work was financed by the European Regional Development Fund (ERDF) through the Operational Programme for 
Competitiveness and Internationalisation - COMPETE 2020 under the PORTUGAL 2020 Partnership Agreement, and through 
the Portuguese National Innovation Agency (ANI) as a part of project “PARRA - Plataforma integrAda de monitoRização e 
avaliação da doença da flavescência douRada na vinhA” (Nº 3447) and supported by the ERDF and North 2020 - North Regional 
Operational Program, as part of project “INNOVINEandWINE - Vineyard and Wine Innovation Platform” (NORTE–01–0145–
FEDER–000038). 

References 

Agapiou, A., Hadjimitsis, D. G., & Alexakis, D. D. (2012). Evaluation of Broadband and Narrowband Vegetation Indices for the 
Identification of Archaeological Crop Marks. Remote Sensing, 4(12), 3892–3919. https://doi.org/10.3390/rs4123892 

Bendig, J. (2015). Unmanned aerial vehicles (UAVs) for multi-temporal crop surface modelling - A new method for plant height 
and biomass estimation based on RGB-imaging. 

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly Detection: A Survey. ACM Comput. Surv., 41(3), 15:1–15:58. 
https://doi.org/10.1145/1541880.1541882 

Chlingaryan, A., Sukkarieh, S., & Whelan, B. (2018). Machine learning approaches for crop yield prediction and nitrogen status 
estimation in precision agriculture: A review. Computers and Electronics in Agriculture, 151, 61–69. 
https://doi.org/10.1016/j.compag.2018.05.012 

Debats, S., Luo, D., Estes, L., Fuchs, T. J., & Caylor, K. K. (2015). A generalized computer vision approach to mapping crop fields 
in heterogeneous agricultural landscapes. https://doi.org/10.7287/peerj.preprints.1367v1 

Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. 
Remote Sensing of Environment, 80(1), 76–87. https://doi.org/10.1016/S0034-4257(01)00289-9 

Gordon, A., Keiding, N., Cox, D., Tong, H., Isham, V., Tibshirani, R., … Reid, N. (1999). Classification, 2nd Edition. Chapman 
and Hall/CRC. https://doi.org/10.1201/9781584888536 

Hague, T., Tillett, N. D., & Wheeler, H. (2006). Automated Crop and Weed Monitoring in Widely Spaced Cereals. Precision 
Agriculture, 7(1), 21–32. https://doi.org/10.1007/s11119-005-6787-1 

Hunt, E. R., Doraiswamy, P. C., McMurtrey, J. E., Daughtry, C. S. T., Perry, E. M., & Akhmedov, B. (2013). A visible band index 
for remote sensing leaf chlorophyll content at the canopy scale. International Journal of Applied Earth Observation and 
Geoinformation, 21, 103–112. https://doi.org/10.1016/j.jag.2012.07.020 

Kalisperakis, I., Stentoumis, C., Grammatikopoulos, L., & Karantzalos, K. (2015). LEAF AREA INDEX ESTIMATION IN 
VINEYARDS FROM UAV HYPERSPECTRAL DATA, 2D IMAGE MOSAICS AND 3D CANOPY SURFACE MODELS. ISPRS 
- International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W4, 299–303. 
https://doi.org/10.5194/isprsarchives-XL-1-W4-299-2015 

Lameski, P., Zdravevski, E., Trajkovik, V., & Kulakov, A. (2017). Weed Detection Dataset with RGB Images Taken Under Variable 
Light Conditions. In ICT Innovations 2017 (pp. 112–119). Springer, Cham. https://doi.org/10.1007/978-3-319-67597-8_11 

Lottes, P., Khanna, R., Pfeifer, J., Siegwart, R., & Stachniss, C. (2017). UAV-based crop and weed classification for smart farming. 
In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3024–3031). 
https://doi.org/10.1109/ICRA.2017.7989347 

Lowe, A., Harrison, N., & French, A. P. (2017). Hyperspectral image analysis techniques for the detection and classification of 
the early onset of plant disease and stress. Plant Methods, 13. https://doi.org/10.1186/s13007-017-0233-z 

Macqueen, J. (1967). Some methods for classification and analysis of multivariate observations. In In 5-th Berkeley Symposium 
on Mathematical Statistics and Probability (pp. 281–297). 



 

 

8 
 

Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., … Dandekar, A. M. (2015). Advanced methods of plant 
disease detection. A review. Agronomy for Sustainable Development, 35(1), 1–25. https://doi.org/10.1007/s13593-014-0246-
1 

Mathews, A. J., & Jensen, J. L. R. (2013). Visualizing and Quantifying Vineyard Canopy LAI Using an Unmanned Aerial Vehicle 
(UAV) Collected High Density Structure from Motion Point Cloud. Remote Sensing, 5(5), 2164–2183. 
https://doi.org/10.3390/rs5052164 

Mitchell, T. M. (1997). Machine Learning (1st ed.). New York, NY, USA: McGraw-Hill, Inc. 

Nair, R. R., Adsul, S. S., Khabale, N. V., & Kawade, V. S. (2016). Analysis And Detection of Infected Fruit Part Using Improved 
k- means Clustering and Segmentation Techniques. IOSR Journal of Computer Engineering, 5. 

Olson, D. L., & Delen, D. (2008). Advanced data mining techniques. Berlin: Springer. 

Otsu, N. (1979). A Tlreshold Selection Method from Gray-Level Histograms, 5. 

Pádua, L., Vanko, J., Hruška, J., Adão, T., Sousa, J. J., Peres, E., & Morais, R. (2017). UAS, sensors, and data processing in 
agroforestry: a review towards practical applications. International Journal of Remote Sensing, 38(8–10), 2349–2391. 
https://doi.org/10.1080/01431161.2017.1297548 

Poblete-Echeverría, C., Olmedo, G. F., Ingram, B., & Bardeen, M. (2017). Detection and Segmentation of Vine Canopy in Ultra-
High Spatial Resolution RGB Imagery Obtained from Unmanned Aerial Vehicle (UAV): A Case Study in a Commercial 
Vineyard. Remote Sensing, 9(3), 268. https://doi.org/10.3390/rs9030268 

Richardson, A. D., Jenkins, J. P., Braswell, B. H., Hollinger, D. Y., Ollinger, S. V., & Smith, M.-L. (2007). Use of digital webcam 
images to track spring green-up in a deciduous broadleaf forest. Oecologia, 152(2), 323–334. https://doi.org/10.1007/s00442-
006-0657-z 

Riley, M. B., Williamson, M. R., & Maloy, O. (2002). American Phytopathological Society. Retrieved May 14, 2018, from 
https://www.apsnet.org/pages/default.aspx 

Savary, S., Ficke, A., Aubertot, J.-N., & Hollier, C. (2012). Crop losses due to diseases and their implications for global food 
production losses and food security. Food Security, 4(4), 519–537. https://doi.org/10.1007/s12571-012-0200-5 

Shafri, H. Z. M. (2016). Machine Learning in Hyperspectral and Multispectral Remote Sensing Data Analysis. In Artificial 
Intelligence Science and Technology (Vols. 1–0, pp. 3–9). WORLD SCIENTIFIC. 
https://doi.org/10.1142/9789813206823_0001 

Tete, T. N., & Kamlu, S. (2017). Detection of plant disease using threshold, k-mean cluster and ann algorithm. In 2017 2nd 
International Conference for Convergence in Technology (I2CT) (pp. 523–526). https://doi.org/10.1109/I2CT.2017.8226184 

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of 
Environment, 8(2), 127–150. https://doi.org/10.1016/0034-4257(79)90013-0 

Weigend, A. S., Hertz, J. A., Krogh, A. S., & Palmer, R. G. (1993). Review of John A. Hertz, Anders S. Krogh, and Richard G. 
Palmer, Introduction to the Theory of Neural Computation. 

Woebbecke, D. M. (University of N., Meyer, G. E., Von Bargen, K., & Mortensen, D. A. (1995). Color indices for weed identification 
under various soil, residue, and lighting conditions. Transactions of the ASAE (USA). Retrieved from http://agris.fao.org/agris-
search/search.do?recordID=US9561468 

Xue, J., & Su, B. (2017). Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications [Research 
article]. https://doi.org/10.1155/2017/1353691 

Zarco-Tejada, P. J., Berjón, A., López-Lozano, R., Miller, J. R., Martín, P., Cachorro, V., … de Frutos, A. (2005). Assessing 
vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous 
canopy. Remote Sensing of Environment, 99(3), 271–287. https://doi.org/10.1016/j.rse.2005.09.002 

 


